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Abstract
Scalability of Graph Neural Networks (GNNs) re-
mains a significant challenge, particularly when
dealing with large-scale graphs. To tackle this,
coarsening-based methods are used to reduce the
graph into a smaller graph, resulting in faster com-
putation. Nonetheless, prior research has not ad-
equately addressed the computational costs during
the inference phase. This paper presents a novel
approach to improve the scalability of GNNs by
reducing computational burden during both train-
ing and inference phases. We demonstrate two dif-
ferent methods (Extra-Nodes and Cluster-Nodes).
Our study also proposes a unique application of
the coarsening algorithm for graph-level tasks, in-
cluding graph classification and graph regression,
which have not yet been explored. We con-
duct extensive experiments on multiple benchmark
datasets in the order of 100K nodes to evaluate the
performance of our approach. The results demon-
strate that our method achieves competitive perfor-
mance in tasks involving classification and regres-
sion on nodes and graphs, compared to traditional
GNNs, while having single-node inference times
that are orders of magnitude faster. Furthermore,
our approach significantly reduces memory con-
sumption, allowing training and inference on low-
resource devices where traditional methods strug-
gle.

1 Introduction
Graph Neural Networks (GNNs) have proven to be a tool of
surprising versatility and modeling capacity. However, there
are still a few issues that limit their general applicability, the
chief among these being the scalability of the GNN models.
This scalability issue is problematic for both the training and
the inference phases. Previous research has attempted to ad-
dress this by reducing the graph into a smaller graph in order
to reduce the computational cost. One such broad technique is
graph coarsening methods, which judiciously remove nodes
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Figure 1: The figure shows how the coarsening algorithm reduces a
graph G with 15 nodes to a coarsened graph G′ with 3 nodes. It also
shows which nodes belong to which partition.

and edges from the graph. However, there are still certain
points of weakness of these algorithms. For one, coarsening
methods can potentially remove important node information.
Secondly, and more pertinent to the current discussion, coars-
ening methods only reduce the training computation; they
do not address the inference time. The next obvious ques-
tion would be to ask why we cannot use coarsening meth-
ods for inference as well. Given a graph G, coarsening algo-
rithms create a coarsened graph G′. While G′ is smaller than
G, the nodes in G′ are combinations of nodes in G, which
can be both train and test nodes. As a result, the prediction
per test node is not available. In another scenario, suppose
a node v′ ∈ G′ is a combination of vi, vj , vk ∈ G where
vi, vj , vk are test nodes. Also, let us assume that the classes
of vi, vj , vk are 0, 0, 2 respectively. The coarsening algorithm
will take the majority label and assign class 0 to v′. Hence,
the model will be trained to predict only the class 0, leading
to discarding the quantification of the model’s performance
on predicting less represented nodes. This is the research
gap that we seek to address in this work. We use coarsen-
ing algorithms to partition the graph into a set of subgraphs
Gs = {G1, G2, . . . , Gk}. We show methods to train on
these subgraphs that show equivalent results to non-coarsened
baselines and sometimes perform better. This comes hand in
hand with a significant reduction in inference time and mem-
ory consumption.

We demonstrate two different methods to append addi-
tional nodes in the subgraphs— Extra Nodes and Cluster
Nodes that respectively append additional nodes to each sub-
graph, either by adding neighboring nodes, or by adding rep-
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resentational nodes corresponding a neighboring cluster. We
theoretically characterize the upper bound of the coarsening
ratio for which the time complexity of our approach is better
than the naive uncoarsened approach. In node classification
and node regression tasks, the baselines typically require the
entire dataset during inference to get a prediction for a single
node. In contrast, our method only needs to pass the subgraph
to which the node belongs. Our results show up to 100×
reduction in inference time and up to 70× less memory
than the baseline while achieving equivalent or better perfor-
mance.

2 Preliminaries
2.1 Graph Notations
Given an undirected graph G = (V,E,X,W ), V is the ver-
tex set, E is the edge set, X ∈ Rn×d is the feature matrix, and
W is the edge weight matrix. The feature of each node vi in
the graph is the ith row vector in X represented as xi ∈ Rd.
Let |V | = n be the number of nodes and |E| = m be the num-
ber of edges. Let us assume A ∈ {0, 1}n×n be the adjacency
matrix of G, di to be the degree of the node vi. D ∈ Rn×n is
a diagonal degree matrix with ith diagonal element as di. We
denote Nj(vi) as the j-hop neighbourhood of node vi ∈ V .

2.2 Graph Neural Network
Graph Neural Network is a neural network designed to work
for graph-structured data. The representation of each node
in the graph is updated recursively by aggregation and trans-
forming node representations of its neighbors. [Kipf and
Welling, 2017] introduced Graph Convolutional Network
(GCN) as follows:

Xl+1 = σ(D̃− 1
2 ÃD̃− 1

2XlWl) (1)
where Xl is the node representation after l layers of GCN,
Ã = A + I , D̃ = D + I , I is an identity matrix of same
dimension as A. Wl is the learnable parameter and σ is a
non-linear activation function.

2.3 Graph Coarsening and Graph Partitioning
[Loukas, 2018] discussed multiple coarsening algorithms
which create a coarsened graph G′ = (V ′, E′, X ′,W ′) from
a given graph G = (V,E,X,W ). We refer the vertex set
V ′ = {v′1, v′2, . . . , v′k} of G′ as coarsened nodes. Given a
coarsening ratio r ∈ [0, 1], we have k = n × r. We can
interpret it as creating k disjoint partitions, C1, C2, . . . , Ck,
from a graph of n nodes. Mathematically, we create a parti-
tion matrix P ∈ {0, 1}n×k, where Pij = 1 if and only if node
vi ∈ Cj .

For the coarsened graph, the adjacency matrix A′ =
PTAP . Similarly, the corresponding degree matrix D′ =
PTDP . [Huang et al., 2021] used normalized partition ma-
trix P = PC− 1

2 , where C is defined as a diagonal matrix
with diagonal entries Cj,j = |Cj |, j = 1, 2, . . . , k.

Along with a coarsened graph, we create a set of disjoint
subgraphs Gs = {G1, G2, . . . , Gk} corresponding to the par-
titions C1, C2, . . . , Ck. The number of nodes in each partition
Ci is denoted by ni. Each subgraph Gi is the induced sub-
graph of G formed by the nodes in Ci. Ai and Di are the
adjacency matrix and degree matrix of Gi respectively.

3 Related Work
The goal of reducing computation costs has been tackled via
different methodologies. Research like [Chiang et al., 2019]
and [Zeng et al., 2020] use a subgraph sampling-based ap-
proach. They sample a small subgraph at each training it-
eration and train the GNN. Other techniques like layer-wise
sampling along with mini-batch training have been studied by
[Chen et al., 2018; Chen and Zhu, 2018; Cong et al., 2020;
Zou et al., 2019]. [Fahrbach et al., 2020] introduced a new
coarsening algorithm based on Schur complements to gener-
ate embeddings for vertices in a large graph. [Huang et al.,
2021] introduced using GNN for a coarsened graph. The mo-
tivation was to utilize graph coarsening algorithms to reduce
the number of nodes and edges in the graph, resulting in less
training time. This approach helps to train GNN for graphs
with a large number of nodes. However, inference time is not
reduced because the nodes cannot be removed during infer-
ence. This training process also caused the removal of im-
portant node-level information. Later, [Xue et al., 2022] ex-
plored shifting the training process from graph-level training
to subgraph-level. Coarsening algorithms were used to split
the graph into k−subgraphs, resulting in the removal of a few
edges. Further, to speed up the training process, they propose
a multi-device training approach where subgraphs are sent to
different devices. This results in a faster training process.
[Kumar et al., 2023] further proposed the usage of feature-
based coarsening algorithms.

4 Methodology
In [Huang et al., 2021], a graph G = (V,E,X,W ) is re-
duced to G′ = (V ′, E′, X ′,W ′) using a partition matrix P
generated from the coarsening algorithm. Here X ′ = PTX .
The labels for the coarsened graph are Y ′ = argmax(PTY ),
where Y is the label matrix of G storing the one-hot en-
coding of the label of each node for the node classification
task. While using argmax, some essential information is
lost. Therefore, we follow a subgraph-level training process
where we don’t remove these label information. To explore
another node-level task, such as node regression, functions
such as the mean of regression targets wouldn’t be appropri-
ate because they lose the variance of the targets. Hence, our
goal is to use subgraphs for training and inference purposes.

To tackle the issue of loss of information corresponding
to the nodes (and their edges) present at the periphery of the
subgraphs after partitioning the graph, we append nodes in
two ways:
• Extra Nodes: Adding the 1-hop neighbouring nodes in

each subgraph Gi denoted by EGi .

EGi =
⋃

v∈Gi

{u ∈ V : u ∈ N1(v) ∧ u /∈ Gi}

However, we don’t perform backpropagation of the predic-
tion on EGi

. [Xue et al., 2022] introduced this approach to
reduce information loss after partitioning. An edge between
two Extra Nodes in EGi

is added if they were connected in G.

• Cluster Nodes: Although adding 1-hop neighboring
nodes in the subgraph helps recover lost information after
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Figure 2: This figure shows the methods of appending additional
nodes in G1, G2, G3.

Algorithm 1 Node-Model(L,A,D,X)

Require: Number of Layers L; A; D; X0 = X;
1: for i = 1 to L do
2: Xi = σ(D̃− 1

2 ÃD̃− 1
2Xi−1Wi−1) # Equation 1

3: end for
4: Z = XLWL

5: return Z

partition, for GNN models with a large number of layers, in-
formation loss will still persist. Instead of adding the neigh-
boring nodes, we will add a node, namely Cluster Nodes, rep-
resenting the neighboring cluster, denoted by CGi

.

CGi =
⋃

v∈EGi

{t : Pv,t ̸= 0}

[Liu et al., 2024] introduced this method to add nodes in
the graph instead of adding to separate subgraphs. They
also added cross-cluster edges among these Cluster Nodes
and proposed a subgraph sampling-based method after adding
these Cluster Nodes and cross-cluster edges. In our work, we
add cross-cluster edges; however, we do not sample from the
constructed set of subgraphs.

Figure 2 illustrates appending these additional nodes using
these approaches. The dashed line shows which nodes are
added as part of these additional nodes. Predictions on these
newly appended nodes will not contribute to loss calculation
and weight update.

Lemma 1. Models with 1 layer of GNN cannot distinguish
between G and Gs when Extra Nodes method is used.

Proof. There are 2 sets of nodes in Gi as follows:

• The set S1 of nodes with 1-hop neighbours in Gi.

• The set S2 of nodes with not all 1-hop neighbors in Gi

Let I1i be the number of nodes whose information does not
get passed on after 1 layer of GNN for Gi.

I1i =

∣∣∣∣∣ ⋃
v∈S2

N1(v)− V (Gi)

∣∣∣∣∣

Algorithm 2 Training GNN (Train on Gs)

Require: G = (V,E,X); Labels Y ; Model M ; Loss ℓ;
1: Apply a coarsening algorithm on G, and output a normal-

ized partition matrix P .
2: Construct Gs = {G1, G2, . . . , Gk} using P;
3: Construct mask for each subgraph Mask =
{mask1,mask2, . . . ,maskk}. Masks denote the
nodes that are used for training;

4: Construct feature matrix {X1, X2, . . . , Xk} for Gs;
5: Construct label matrix {Y1, Y2, . . . , Yk} for Gs ;
6: O ← []; Y ← [];
7: for each subgraph Gi in Gs do
8: Oi = M(Ai, Di, Xi);
9: O.append(Oi[maski]);

10: Y.append(Yi[maski]);
11: end for
12: Loss = ℓ(O, Y );
13: Train M to minimize Loss;

Now,

∣∣∣∣∣ ⋃
v∈S1

{u ∈ V : u ∈ N1(v) ∧ u /∈ Gi}

∣∣∣∣∣ = 0

Also, EGi =
⋃

v∈S2

{u ∈ V : u ∈ N1(v) ∧ u /∈ Gi}

⇒ |EGi
| = I1i

Hence when Extra Nodes is used, 1 Layer GNN model can-
not distinguish G and Gs.

Using Cluster Nodes approach to append additional nodes
to subgraphs is better for two reasons:
• The number of nodes added to a subgraph via Cluster

Nodes is less than or equal to the number of nodes added
via the Extra Nodes approach. This is because, using Extra
Nodes, we add all the neighboring nodes. However, we only
add one representative node for each neighboring cluster us-
ing Cluster Nodes. As the GNN propagation depends on the
number of nodes, the time taken to train and infer these modi-
fied subgraphs with Cluster Nodes is less than or equal to that
with Extra Nodes.
• As mentioned before, the Extra Nodes approach reduces

the information loss due to partitioning. However, with mul-
tiple layers of GNN, longer dependencies are not captured.
In contrast, the Cluster Nodes approach overcomes this by
computing a single Cluster Nodes’s representation as a com-
bination of features of all the nodes present in the correspond-
ing cluster. This results in sharing further node information
in 1-hop. Additionally, the transfer of information from one
cluster to another is captured.

4.1 Node-level Task
We use Algorithm 1 with L number of layers to create a stan-
dard GNN model for node-level tasks. Training the model on
G′ is similar to the [Huang et al., 2021] training algorithm.
We design Algorithm 2 to train the model on Gs.



Algorithm 3 Graph-Model-G′(L,A′, D′, X ′)

Require: Number of Layers L;A′;D′;X0 = X ′

1: for i = 1 to L do
2: Xi = σ(D̃′−

1
2 Ã′D̃′−

1
2Xi−1Wi−1) #Equation 1

3: end for
4: X̄ = MaxPooling(XL)
5: Z = X̄WL

6: return Z

Algorithm 4 Graph-Model-Gs(Gs, L,mask)

Require: Gs = {G1, G2, . . . , Gk}; Number of Layers L;
mask = {mask1,mask2, . . . ,maskk};

1: X ← []
2: for each subgraph Gi ∈ Gs do
3: for j = 1 to L do
4: Xj = σ(D̃i

− 1
2 ÃiD̃i

− 1
2Xj−1Wj−1)

5: end for
6: X.append(XL[maski])
7: end for
8: X̄ = MaxPooling(X)
9: Z = X̄WL

10: return Z

For the node classification task, argmax is used for creat-
ing labels for G′ and CrossEntropy as a loss function. For the
node regression task, we do not create any coarsened graph.
Mean Absolute Error (MAE) is used as the loss function.

4.2 Graph-level Task
Unlike node-level tasks, the number of dataset samples is
not decreasing. For a given graph G ∈ D, we create G′

and Gs = {G1, G2, . . . , Gk}. Each subgraph contains over-
lapping nodes when we use Extra Nodes or Cluster Nodes.
Therefore, a boolean array maski is created for each sub-
graph Gi such that True is set for nodes that actually belong
to the subgraph Gi (not as an Extra Nodes or Cluster Nodes);
otherwise, False.

Unlike node-level tasks, we cannot train and infer on G′

and Gs using the same model. We use Algorithm 3 to create
a model to train on G′. We design Algorithm 4 to train the
model on Gs. We use the CrossEntropy loss function for the
graph classification task and the Mean Absolute Error(MAE)
for the graph regression task. We use Algorithm 2 without
the backpropagation for inference.

4.3 Time and Space Complexity
The dimensions of the matrices in Equation 1 are (n× n) for
Ã, (n × d) for Xl and (d × d) forWl. Time complexity for
one layer of GNN computation is O(n2d + nd2). If we take
L layers, then the total time is O(Ln2d + Lnd2). The space
complexity is O(n2 + Lnd + Ld2). When we compute on a
sparse graph, the time complexity isO(m+Lnd2) and space
complexity is O(m+ Lnd+ Ld2).

[Huang et al., 2021] improved the time and space complex-
ity (mentioned in Table 1 and Table 2) for training the net-

Train Test

Classical nd2 + n2d nd2 + n2d

Coarsening kd2 + k2d nd2 + n2d

FIT-GNN
kd2 + k2d

+
∑k

i=1[n̄
2
i d+ n̄id

2]

∑k
i=1[n̄

2
i d+ n̄id

2]

Table 1: This table shows the training and inference time complexity
of FIT-GNN as compared to classical and coarsening approaches.

Train Test

Classical n2 + nd+ d2 n2 + nd+ d2

Coarsening k2 + kd+ d2 n2 + nd+ d2

FIT-GNN k2 + kd+ d2

+maxi=1[n̄
2
i + n̄id]

d2

+maxi=1[n̄
2
i + n̄id]

Table 2: This table shows the training and inference space complex-
ity of FIT-GNN compared to classical and coarsening approaches.

work by reducing the number of nodes from n to k. However,
the inference time and space complexity remain the same.

Let us compare three different models. One is the classical
model, where no coarsening or partitioning is done; the sec-
ond is the [Huang et al., 2021] approach; third is our approach
where from the graph G we create G′ and Gs.

The inference time complexity of our model is∑k
i=1[n̄

2
i d + n̄id

2], where n̄i = ni + ϕmax where
ϕmax = maxi(EGi) for Extra Nodes or ϕmax = maxi(CGi)
for Cluster Nodes is the maximum number of additional
nodes added per subgraph. Table 1 and Table 2 show the
comparison between different approaches.

Lemma 2. The inference time complexity is at most∑k
i=1[(ni + ϕmax)

2d + (ni + ϕmax)d
2] ≤ n2d + nd2 for

r ≤ d−2
d+ϕmax

and ϕmax ≤
n2−

∑k
i=1 n2

i

nd

Proof.

k∑
i=1

[(ni + ϕmax)
2d+ (ni + ϕmax)d

2]

=

k∑
i=1

[n2
i d+ ϕ2

maxd+ 2niϕmaxd+ nid
2 + ϕmaxd

2]

= kϕ2
maxd+ 2nϕmaxd+ nd2 + kϕmaxd

2 +

k∑
i=1

n2
i d

= nrϕ2
maxd+ 2nϕmaxd+ nd2 + nrϕmaxd

2 +

k∑
i=1

n2
i d

(where k = nr)

= nd2 + nϕmaxd(rϕmax + 2 + rd) +

k∑
i=1

n2
i d



Now we know, r ≤ d−2
d+ϕmax

⇒ rϕmax + 2 + rd ≤ d and

ϕmax ≤
n2−

∑k
i=1 n2

i

nd ⇒ nϕmaxd ≤ n2 −
∑k

i=1 n
2
i .

Using this, we can say,

nd2 + nϕmaxd(rϕmax + 2 + rd) +

k∑
i=1

n2
i d

≤nd2 + (n2 −
k∑

i=1

n2
i )d+

k∑
i=1

n2
i d

=nd2 + n2d

Hence,
∑k

i=1[(ni + ϕmax)
2d+ (ni + ϕmax)d

2] ≤ n2d+ nd2.

For a given graph, if the above condition is satisfied, our
approach has better inference time and space complexity than
other approaches.

5 Experiments
Once we have constructed G′ and Gs, we train FIT-GNN in 4
different setups:
•Gc-train-to-Gs-train: Train the GNN model on G′, then

use the learned weight as an initialization for training and fi-
nal inference on Gs.
•Gc-train-to-Gs-infer: Train the GNN model on G′, then

infer on Gs.
• Gs-train-to-Gs-infer: Train and infer only on Gs.
• Gc-train-to-Gc-infer: Unlike node-level tasks, we can

use G′ to infer for graph-level tasks. Therefore, in this setup,
we train and infer on G′.
For tasks like node regression, we can only perform Gs-train-
to-Gs-infer because a coarsened graph is not created.

5.1 Experimental Setup
Dataset descriptions are in Section A of the appendix, and
Section C of the appendix covers the hyperparameters, de-
vice configuration, and key packages used for the exper-
iments. Source Code present at https://github.com/Roy-
Shubhajit/FIT-GNN.

Node regression
We use three real-world network datasets for the node regres-
sion task: Chameleon, Crocodile, and Squirrel [Rozember-
czki et al., 2019]. The nodes are divided into train (30%),
validation (20%), and test (50%) sets. We perform 20 runs
and report the average and standard deviation of the smallest
10 normalized MAE, with normalization achieved by divid-
ing the loss by the standard deviation of the target values.

Node classification
We conducted node classification experiments on six real-
world network datasets: Cora [McCallum et al., 2000], Cite-
seer [Giles et al., 1998], Pubmed [Sen et al., 2008], Coauthor
Physics [Shchur et al., 2018], DBLP [Tang et al., 2008], and
a subset of OGBN-Products [Hu et al., 2020] extracted using
Leiden algorithm [Traag et al., 2019]. We used three types of
splits for the datasets: we applied the public split from [Yang
et al., 2016] for Cora, Citeseer, and PubMed. In the “few”

r Dataset
Chameleon Crocodile Squirrel

Classical - 0.844± 0.000 0.853± 0.000 0.809± 0.000

FIT-GNN 0.1 0.460± 0.002 0.362± 0.002 0.648± 0.002
0.3 0.499± 0.006 0.364± 0.001 0.672± 0.003

Table 3: This table shows the normalized MAE loss (lower is better)
for node regression tasks on different datasets with Gs-train-to-Gs-
infer experiment setup and Cluster Nodes method.

split, we set aside labeled nodes per class for training and
validation, while the rest form the test set. We ran 20 trials
for each configuration and reported the average and standard
deviation of the top 10 accuracies.

Graph Classification
Graph Classification has been conducted on the PROTEINS
and AIDS dataset [Morris et al., 2020]; we randomly split the
dataset into a 2 : 1 : 1 ratio of train, validation, and test.

Graph Regression
We perform graph regression on the QM9 [Wu et al., 2017],
and a subset of ZINC [Gómez-Bombarelli et al., 2016]
datasets, using the same splits as in graph classification.
[Gilmer et al., 2017] grouped the 19 properties of each
molecule in QM9 dataset into four broad categories. We pre-
dict one property from each of the four broad categories. The
four specific properties are the following: the dipole moment
(µ), the gap between ϵHOMO and ϵLUMO, zero-point vibra-
tion energy (ZPVE), and at 298.15K, the atomization energy
(UATOM) of each molecule.

5.2 Result and Analysis
Table 3 shows the node regression error and standard devia-
tion on coarsening ratios 0.1 and 0.3. All the experiments for
node regression are shown with Cluster node method. With
a higher coarsening ratio, more subgraphs are created. As
the coarsening ratio increases, the size of each subgraph also
reduces, and important neighboring node information gets
lost. Hence, the performance decreases with an increase in
the coarsening ratio.

Table 4 shows the results for node classification accuracy
and standard deviation on different coarsening ratios on the
Cora dataset with Cluster Nodes approach. With coarsening
ratios 0.1 and 0.3, the observed performance is better than
other coarsening ratios, and the inference time taken is also
less. This motivates us to experiment on other datasets with
lower coarsening ratios. Table 5 shows the results for node
classification on different datasets using coarsening ratios 0.1
and 0.3. From the results, it can be observed that the ac-
curacy is comparable to the baseline. Since experimenting on
the full OGBN-Products dataset is not feasible due to memory
constraints, we create a proxy graph by taking the maximum-
sized communities with the number of nodes that sum up to
165000. For the subset of the OGBN-Products graph, the per-
formance is better with the baseline even with 0.56% training
nodes. For larger datasets like Pubmed and Physics Coau-
thor, a lower coarsening ratio doesn’t perform better than the
baseline.

https://github.com/Roy-Shubhajit/FIT-GNN
https://github.com/Roy-Shubhajit/FIT-GNN


Fixed Few
r [Huang et al., 2021] FIT-GNN [Huang et al., 2021] FIT-GNN

0.1 0.772± 0.006 0.829± 0.005 0.676± 0.051 0.695± 0.016
0.3 0.817± 0.016 0.815± 0.005 0.694± 0.045 0.719± 0.011
0.5 0.827± 0.001 0.807± 0.005 0.688± 0.045 0.729± 0.007
0.7 0.824± 0.002 0.800± 0.008 0.679± 0.046 0.706± 0.012

Table 4: Results on Cora Dataset. The metrics shown here include the average and standard deviation of the top 10 accuracies over 20
runs. We show Gc-train-to-Gs-train experimental setup result for fixed and Gc-train-to-Gs-infer experimental result for few. The highest
accuracy for each coarsening ratio is shown in bold.

r = 0.1 r = 0.3

Dataset Split [Huang et al., 2021] FIT-GNN [Huang et al., 2021] FIT-GNN

Citeseer Few 0.583± 0.063 0.614± 0.021 0.581± 0.052 0.624± 0.022
Fixed 0.711± 0.004 0.677± 0.023 0.714± 0.003 0.703± 0.007

Pubmed Few 0.685± 0.052 0.627± 0.116 0.687± 0.042 0.676± 0.038
Fixed 0.783± 0.005 0.704± 0.022 0.784± 0.004 0.677± 0.013

DBLP Few 0.679± 0.056 0.683± 0.072 0.648± 0.052 0.670± 0.034
Random 0.760± 0.021 0.789± 0.005 0.745± 0.019 0.771± 0.007

Physics Coauthor Few 0.878± 0.036 0.783± 0.028 0.908± 0.023 0.877± 0.019
Random 0.915± 0.014 0.830± 0.048 0.934± 0.006 0.910± 0.011

OGBN-Products Random 0.296± 0.034 0.346± 0.014 0.316± 0.016 0.406± 0.009

Table 5: Results for node classification tasks with accuracy as the metric (higher is better). We use the Cluster Nodes method to append
additional nodes to subgraphs and Gc-train-to-Gs-train as experimental setup.

FIT-GNN
Dataset Classical r = 0.3 r = 0.5

ZINC (Subset) 0.688 0.578 0.657
QM9 (µ) 0.869 0.841 0.948
QM9 (∆ϵ) 1.012 0.875 0.969
QM9 (ZPVE) 1.091 0.818 0.840
QM9 (UATOM) 1.078 0.754 0.630

Table 6: Graph regression tasks results on ZINC (Subset) and QM9.
The metrics shown are in terms of normalized MAE (lower is better)
with Gs-train-to-Gs-infer experimental setup. The Cluster Nodes
method is used to append additional nodes to subgraphs.

Table 6 shows the results for the graph regression task on
ZINC (Subset) and QM9 dataset. All the results show that
the FIT-GNN model’s performance is comparable to the base-
lines. It is also observed that a lower coarsening ratio yields
better loss, which implies that the model performs better on
molecular graphs when the subgraph size is high. It implies
that finer subgraphs lose out global information about the
molecule, which is necessary for the prediction.

Table 7 displays graph classification results using two ex-
perimental setups across two datasets. Training on coarsened
graphs outperforms the baseline but discards important infor-
mation. Conversely, training on subgraphs significantly im-
proves predictions compared to the baseline.

Table 8 and Table 9 show the comparison of performance
with different coarsening algorithms used by [Huang et al.,
2021]. We find that variation neighborhoods is more con-

Gc-train-to
-Gs-infer

Gs-train-to
-Gs-infer

Classical r = 0.3 r = 0.5 r = 0.3 r = 0.5

AIDS 0.792 0.810 0.836 0.812 0.843
PROTEINS 0.623 0.636 0.681 0.812 0.821

Table 7: Results for the graph classification task on AIDS and PRO-
TEINS are presented. The metrics reflect accuracy; higher values
indicate better performance. The table also compares two experi-
mental setups.

sistent among all other coarsening algorithms, therefore we
use it to report other results also.

5.3 Inference Time and Memory Comparison
As mentioned in Section 4.3, our inference time is lesser than
the standard GNN if certain conditions are met. Therefore,
we empirically show reduction of time and space by our FIT-
GNN model during inference. For recording the inference
time, we use the Python time package to calculate the differ-
ence in time before and after the inference step.

In Table 10, we show the average time to predict for 1000
nodes in the baseline and FIT-GNN models for node re-
gression and classification tasks. The baseline model pro-
cesses the entire graph, increasing inference time, especially
for large graphs. In contrast, the FIT-GNN model only re-
quires the relevant subgraph, resulting in faster predictions.
For larger datasets like the OGBN-Products, we see up to
100× reduction in inference time. Table 17 in the Ap-



Cora Chameleon
Coarsening Method r = 0.1 r = 0.3 r = 0.1 r = 0.3

variation neighborhoods 0.821± 0.003 0.803± 0.005 0.465± 0.005 0.481± 0.006
algebraic JC 0.827± 0.006 0.804± 0.003 0.544± 0.005 0.504± 0.003
kron 0.758± 0.004 0.800± 0.002 0.571± 0.004 0.580± 0.013
heavy edge 0.736± 0.012 0.773± 0.006 0.572± 0.002 0.531± 0.002
variation edges 0.484± 0.006 0.471± 0.012 0.513± 0.003 0.542± 0.005
variation cliques 0.751± 0.012 0.801± 0.009 0.674± 0.009 0.679± 0.008

Table 8: Results comparing various coarsening methods on Cora and Chameleon datasets and the metric for each dataset are accuracy (higher
the better) and normalized MAE (lower the better) respectively.

PROTEINS ZINC (subset)
Coarsening Method r = 0.3 r = 0.5 r = 0.3 r = 0.5

variation neighborhoods 0.652 0.739 0.629 0.859
algebraic JC 0.783 0.478 0.823 0.810
kron 0.522 0.652 0.663 1.201
heavy edge 0.565 0.609 2.114 1.227
variation edges 0.652 0.565 1.548 1.883
variation cliques 0.696 0.652 0.689 0.742

Table 9: Results comparing various coarsening methods on PRO-
TEINS and ZINC (subset) datasets. The metric for the PROTEINS
dataset is accuracy (higher the better), and for the ZINC (subset) is
normalized MAE (lower the better)

FIT-GNN
Dataset Classical r = 0.1 r = 0.3

Chameleon 0.0027 0.0016 0.0014
Squirrel 0.0081 0.0017 0.0014
Crocodile 0.0070 0.0015 0.0015
Cora 0.0026 0.0019 0.0020
Citeseer 0.0031 0.0018 0.0019
Pubmed 0.0042 0.0019 0.0018
DBLP 0.0063 0.0020 0.0018
Physics Coauthor 0.0252 0.0020 0.0017
OGBN-Products 0.1762 0.0017 0.0016

Table 10: Inference time (sec) comparison for a single node using
standard GNN as a baseline and FIT-GNN with two different coars-
ening ratios. Lower is better. Here, we used Cluster Nodes.

pendix shows the detailed comparison of memory consump-
tions for different datasets for both Extra Nodes and Cluster
Nodes method along with the baseline memory, which high-
lights that the FIT-GNN model uses up to 70× less memory
than the baseline.

Table 11 compares the inference time of graph classifi-
cation and graph regression task. We randomly select 1000
graphs from the test split and infer them for baseline and FIT-
GNN. We also append additional nodes to each subgraph us-
ing Cluster Nodes method. The table shows how our method
is comparable and sometimes faster than the baseline. Also,
we observe that the inference time increases with a higher
coarsening ratio. Because, with a higher coarsening ratio, the
number of nodes in G′ increases, resulting in more edges. In
table 16 in the Appendix, we show the estimated ϕmax value
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Figure 3: Comparison of inference time memory consumption (in
MB) for Coauthor Physics Dataset between baseline and FIT-GNN

FIT-GNN
Dastaset Classical r = 0.3 r = 0.5

ZINC (subset) 0.00184 0.00184 0.00190
QM9 0.00173 0.00180 0.00191
AIDS 0.00163 0.00155 0.00163
PROTEINS 0.00165 0.00160 0.00163

Table 11: Inference time (sec) comparison for the graph-level task.
We use the Cluster Nodes method to add additional nodes to each
subgraph and Gc-train-to-Gc-infer experiment setup

from the feature dimension of the nodes and the coarsening
ratio. Combinations with negative numbers indicate the FIT-
GNN-based approach won’t reduce the inference time.

Overall, the inference time and memory for all the tasks
mentioned are drastically less than the classical approach
while maintaining the performance mentioned in the previ-
ous section.

6 Conclusion
In this paper, we have focused on inference time and memory
and presented a new way to utilize existing graph coarsening
algorithms for GNNs. We have provided theoretical insight
corresponding to the number of nodes in the graph for which
the FIT-GNN model reduces the time and space complexity.
Empirically, we have shown that our method is comparable
to the uncoarsened baseline while being orders of magnitude
faster in terms of the inference time and consuming a frac-
tion of the memory. A few possible future directions involve
studying directed and weighted graphs, focusing on the theo-
retical connections between Extra Nodes and Cluster Nodes.
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A Dataset Description

Dataset Number of
Graphs

Average
Nodes

Average
Edges Features Classes

PROTEINS 1113 19 72 3 2
AIDS 2000 7 16 38 2

Table 12: Summary of datasets used for Graph classification Dataset

Dataset Number of
Graphs

Average
Nodes

Average
Edges Features Number of

Targets
QM9 130831 8 18 11 19
ZINC (subset) 10000 11 25 1 1

Table 13: Summary of datasets used for Graph regression Dataset

Dataset Nodes Edges Features Classes
Cora 2708 5278 1433 7
Citeseer 3327 4552 3703 6
Pubmed 19717 44324 500 3
DBLP 17716 52867 1639 4
Physics
Coauthor 34493 247962 8415 5

OGBN-Products 165000 4340428 100 47

Table 14: Summary of datasets used for Node classification Dataset

Dataset Nodes Edges Features Number of
Targets

Chameleon 2277 31396 128 1
Squirrel 5201 198423 128 1
Crocodile 11631 170845 128 1

Table 15: Summary of datasets used for Node regression Dataset

Dataset r = 0.1 r = 0.3 r = 0.5 r = 0.7

PROTEINS 6.999 0.333 −1.000 −1.571
AIDS 322.000 82.000 34.000 13.429
QM9 79.000 19.000 7.000 1.857
ZINC (subset) −11.000 −4.333 −3.000 −2.429

Table 16: Calculated ϕmax values for different datasets and coarsen-
ing ratios as per Lemma 1.

B More on Extra Nodes and Cluster Nodes
B.1 Extra Nodes
There are 3 sets of nodes in Gi.

• Nodes with 1-hop and 2-hop neighbours in Gi. Let us
call this set S1

• Nodes with 1-hop neighbours in Gi but ∃v in 2-hop
neighbourhood that is not in Gi. Let us call this set S2

• Node where ∃v in 1-hop and 2-hop neighbourhood that
is not in Gi. Let us call this set S3.

Let I2i be the number of nodes whose information doesn’t get
passed on after 2 layer of GNN for Gi.

I2i =

∣∣∣∣∣ ⋃
v∈S3

N2(v)− V (Gi)

∣∣∣∣∣

When we use Extra Nodes, the information loss can be writ-
ten as follows:

I2i =

∣∣∣∣∣ ⋃
v∈S3

N2(v)− EGi

∣∣∣∣∣
The above entity will depend on the density of the subgraphs
formed and the number of connections each subgraph shares
with each other. An algorithm with an objective to reduce this
entity for all subgraphs will lose the least amount of informa-
tion when Extra Node method is used.

B.2 Cluster Nodes
Given a partition matrix P , the features of the coarsened node
are X ′ = PTX . Given a normalized partition matrix, the
features of a node v′i ∈ G′ is the degree-weighted average of
the features of nodes in Ci. This is one of the functions f
used to create the features of the cluster node from Ci.

Previously, according to Lemma 1, there is no informa-
tion loss when using the 1 layer of GNN and Extra Nodes
method. It was also easy to quantify in terms of the number
of nodes. However, it is different for Cluster Nodes. Let us
discuss the issues first.
• Only a weighted version of node information is shared

with the subgraph. Suppose vc, vd ∈ Gi is connected to
va, vb ∈ Gj . Then the information contributed by these nodes
is d(va)xa+d(vb)xb∑

p d(vp)
. Here d(vp) represents the degree of node

vp, and xp represents the feature of node vp.
• Other node information will also be shared which is∑
p ̸=va,vb

d(vp)xp∑
p d(vp)

. This will capture further dependencies.
The performance of Cluster Node will depend on some

distance or similarity metric between xc, xd and f(Cj).

C Experiment Details (Parameters and
Device Configuration)

For node classification and node regression tasks, we use
Adam Optimizer with a learning rate of 0.01 and L2 regu-
larization with 0.0005 weight. We use Adam Optimizer with
a learning rate of 0.0001 and L2 regularization with 0.0005
weight for graph level tasks. For both coarsened graph and
set of subgraph based model, we set epochs to 300 and the
number of layers of GCN to 2 for training. We set the hidden
dimensions for each layer of GCN to 512.

The device configurations are Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz, 256GB RAM, NVIDIA A100 40GB GPU.
We use Pytorch Geometric to to train our models.

D Results
This section shows the memory consumption for different
datasets with different methods. Also, we show how the FIT-
GNN model performs with different methods of appending
additional nodes to subgraphs at different coarsening ratios.



FIT-GNN
Dataset Split r = 0.1 r = 0.3 r = 0.5 r = 0.7 Baseline

Cora cluster 1.310 0.648 0.694 0.868
15.743extra 2.072 1.134 1.017 1.017

Citeseer cluster 31.559 2.148 1.253 1.686
49.488extra 31.559 3.114 1.788 1.788

Pubmed cluster 0.613 0.569 0.571 0.573
41.227extra 0.798 0.590 0.590 0.590

DBLP cluster 6.067 2.940 1.847 1.966
118.121extra 13.907 4.663 2.649 2.274

Physics Coauthor cluster 24.025 13.088 13.388 14.353
1169.521extra 63.146 22.434 22.434 22.434

Chameleon cluster 0.212 0.246 0.291 0.438
2.198extra 0.653 0.653 0.653 0.592

Crocodile cluster 1.183 1.188 1.735 1.866
11.562extra 4.368 4.368 4.368 3.134

Squirrel cluster 1.507 1.607 1.903 3.009
9.075extra 7.275 7.275 7.275 6.953

OGBN-Products cluster 6.047 5.613 8.636 - 208.029

Table 17: Summary of memory consumption of datasets used for node-level tasks. All units are in MegaBytes (MB)

r Extra Nodes Cluster Nodes

0.1 0.798± 0.008 0.824± 0.003
0.3 0.798± 0.008 0.807± 0.004
0.5 0.807± 0.004 0.814± 0.004
0.7 0.797± 0.007 0.808± 0.006

Table 18: Average of top 10 accuracies (higher the better) of node
classification task on Cora dataset with Gs-train-to-Gs-infer exper-
imental setup. The table also demonstrates the superior performance
of the Cluster Nodes method over Extra Nodes.

r Extra Nodes Cluster Nodes

0.1 0.504± 0.004 0.460± 0.003
0.3 0.579± 0.006 0.499± 0.006
0.5 0.585± 0.004 0.505± 0.004
0.7 0.504± 0.006 0.560± 0.004

Table 19: Average of best 10 losses (lesser the better) of node regres-
sion task on Chameleon dataset with Gs-train-to-Gs-infer experi-
mental setup. The table also demonstrates the better performance of
the Cluster Nodes method over Extra Nodes.

Dataset Coarsening Ratio Top 10 Loss
Chameleon Baseline 0.844± 0.000

0.1 0.460± 0.002
0.3 0.499± 0.006
0.5 0.587± 0.000
0.7 0.591± 0.080

Crocodile Baseline 0.853± 0.000
0.1 0.362± 0.002
0.3 0.364± 0.001
0.5 0.375± 0.001
0.7 0.384± 0.002

Squirrel Baseline 0.809± 0.000
0.1 0.648± 0.002
0.3 0.672± 0.003
0.5 0.729± 0.004
0.7 0.694± 0.004

Table 20: Node Regression Results with Gs-train-to-Gs-infer ex-
perimental setup.
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