
GSoC 2024 Proposal

Open Science Labs: PyDataStructs:
Add C++ Backend for all trees and

port stack.py to C++ Backend

Organization: NumFOCUS
Sub-Organization: Open Science Labs

Project Partner: PyDataStructs

Kishan Ved

March 29, 2024

Contents

1 About Me 2
1.1 Personal Information . 2
1.2 Personal Background . 3
1.3 Programming Background . 3
1.4 Previous Contributions to Open Source 5

1.4.1 PyDataStructs . 5
1.4.2 Other Open Source Contributions 6

1.5 Why me? . 6
1.6 My Availability . 7

2 The Project 7
2.1 Adding C++ backend for Binary Trees 8

1

2.1.1 Binary Trees: . 8
2.1.2 Binary Search Trees: 9
2.1.3 Self Balancing Binary Trees: 9
2.1.4 Cartesian Trees: . 9
2.1.5 Treap: . 10
2.1.6 AVL Trees: . 10
2.1.7 Splay Trees: . 11
2.1.8 Red Black Trees: . 11
2.1.9 Binary Indexed Trees: 11
2.1.10 Binary Tree Traversals: 12

2.2 Porting Stack.py to C++ Backend 12
2.2.1 Stack: . 12
2.2.2 Array Stack: . 12
2.2.3 Linked List Stack: . 13

3 Timeline 13
3.1 Pre-GSoC Period . 14
3.2 GSoC Period . 14

3.2.1 Community Bonding Period 14
3.2.2 Phase 1 . 15
3.2.3 Phase 2 . 16

3.3 Post-GSoC Period . 16

4 Acknowledgements 16

5 Preference 17

1 About Me

1.1 Personal Information

• Name - Kishan Ved

• University - Indian Institute of Technology, Gandhinagar

• Program - Bachelor of Technology (B.Tech.)

• Major - Computer Science and Engineering

2

• Year - Second Year Undergraduate

• Expected Graduation Date - August, 2026

• Timezone - IST (UTC + 5:30)

• Email ID (University and GitHub) - kishan.ved@iitgn.ac.in

• Email ID (Personal, used for GSoC registration) - kishanved123456@gmail.com

• Contact Number - +91 9619319866

• GitHub - Kishan-Ved

• Resume - Resume

• Website - kishanved.tech

1.2 Personal Background

I am a sophomore at IIT Gandhinagar, in the department of Computer Sci-
ence and Engineering. I’ve always been fascinated by science and technology
and I’m keen to implement solutions that benefit the society. I secured the
All India Rank 1348 in the JEE Examination, to enter into my pres-
tigious university, IIT Gandhinagar. I have been selected as a Reliance
Foundation Undergraduate Scholar, which is offered to the top 5000 stu-
dents among thousands of applicants. Please find my resume here. I would
like to highlight that I am among the top 5 performers of my batch
(by CPI), with a CPI of 9.75/10. I am well versed with the languages: C++
and Python, and I actively take part in competitive programming contests on
Codeforces. I have a rating of 1350+ on Codeforces, here is my handle.
More information about me is available on my website. For communication,
I prefer English.

1.3 Programming Background

I use Ubuntu 22.04.4 LTS as my operating system and Visual Studio Code as
my editor. I began contributing to open source software by making changes to
the documentation of scikit-learn. Here is the PR. I have also contributed
to PyDataStructs, where I implemented a function: Introsort, in the

3

mailto:kishan.ved@iitgn.ac.in
mailto:kishan.ved@iitgn.ac.in
https://github.com/Kishan-Ved
https://kishanved.tech/assets/pdf/Kishan_Ved_Resume_Mar29.pdf
https://kishanved.tech/
https://kishanved.tech/assets/pdf/Kishan_Ved_Resume_Mar29.pdf
https://codeforces.com/profile/kishan.ved
https://kishanved.tech/
https://github.com/scikit-learn/scikit-learn/pull/26807
https://github.com/codezonediitj/pydatastructs/pull/549

Python backend, which has been merged. I have done several projects using
Python, C++ and many other popular languages. I designed the website
of Amalthea, the technical summit of my college, IIT Gandhinagar. During
my winter vacation, I made a resume generator, which can write LaTeX code
for generating a professional resume, just by filling out a form. This project
gained popularity in my college, and is currently being used by many. This
encouraged me to open source the code, making this my first (self owned)
open source project: IIT Gandhinagar’s Resume Generator. I am
interested in machine learning, and I’ve made a few projects, in the form of
jupyter notebooks. I occasionally write machine learning blogs on my blog
page. A complete list of my project can be found here. A few of my projects,
particularly in Python and C++, are:

• Implemented Introsort in PyDataStructs - In this open source
contribution, I implemented the function: Introsort, in the Python
backend of PyDataStructs. All the parameters of this function have
been taken into consideration and are carefully and correctly imple-
mented. The code was properly documented (via comments), which
give a detailed description of the function, the parameters, expected
output and references. This PR #549 has been successfully merged
and this lead to the Issue #545 being solved and closed.

• Spacecraft Charge Distribution Modelling - In this project, I
worked with Dr. Soumyabrata Chakrabarty, a scientist at the Indian
Space Research Organization (ISRO), who is also a visiting professor at
IIT Gandhinagar. This project involved using the method of moments
to derive equations for finding the charge density on a spacecraft’s sur-
face and employing numerical methods such as Gaussian elimination,
Gauss-Jordan algorithm, and TDMA to solve this system of equations.
Programming of all mathematical equations and visualizations are done
using Python and it’s libraries. Here is the link to the report and the
poster.

• Intelligent Game Engine - This project involves making games where
the user plays against an ‘intelligent’ algorithm, that doesn’t allow the
user to win, or delays it. This makes the game play by the computer
logical. This has been achieved by constructing a graph of the game,
and then performing a DFS or BFS search on all possibilities to find
the best move. This project was focused on algorithmic optimization

4

https://amalthea.iitgn.ac.in/
https://kishan-ved.github.io/resume_generator/resumegenerator.html
https://kishan-ved.github.io/Blogs/
https://kishan-ved.github.io/Blogs/
https://kishanved.tech/projects/
https://github.com/codezonediitj/pydatastructs/pull/549
https://github.com/codezonediitj/pydatastructs/issues/545
https://drive.google.com/file/d/1F9s3aGeqxS9QxVh0xjhW9uqkMN1q875s/view?usp=sharing
https://drive.google.com/file/d/1rb8Ql9Nwg_cmSJ4kE4xeA9ZFuXZo30Lt/view?usp=sharing

and writing clean and reusable code. The repository contains games
like The Game of Sim, Connect4, Up it Up game, a 2*2*2 Rubik’s cube
solver and a Sudoku solver. All the code has been written using C and
C++. The GitHub repository can be found here.

• Human Activity Recognition using ML - In this project, I made
a machine learning model that uses only decision trees to recognize 6
different human activities by utilizing time series data of acceleration
involved. Dimensionality reduction and hyperparameter tuning have
been employed. This project is done in Python. The GitHub repository
can be found here.

• Extracting communities from the Facebook Graph - In this
project, I have implemented a greedy algorithm to extract the densest
sub-graph from Facebook’s graph (with pages being nodes and mutual
links being edges). Here, I learned to employ data clustering techniques
on large real-world datasets, involving logic and algorithmic optimiza-
tion in terms of both space and time complexity. This project is devel-
oped using Python and its relevant libraries like NumPy and Pandas.
The GitHub repository can be found here.

Details on the above and more projects of mine are available on my GitHub
profile and on my website.

1.4 Previous Contributions to Open Source

1.4.1 PyDataStructs

Merged PR
#549: Implemented Introsort in Python backend

Closed Issue
PyDataStructs Issue #545

In this open source contribution, I implemented the function: Introsort, in
the Python backend of PyDataStructs. All the parameters of this function
have been taken into consideration and are carefully and correctly imple-
mented. The code was properly documented (via comments), which give a
detailed description of the function, the parameters, expected output and
references.

5

https://github.com/Kishan-Ved/IntelligentGames
https://github.com/Kishan-Ved/ML-actifier
https://github.com/Kishan-Ved/DS_Clustering/blob/master/facebook_graph_clustering.ipynb
https://github.com/Kishan-Ved
https://github.com/Kishan-Ved
https://kishanved.tech/projects/
https://github.com/codezonediitj/pydatastructs/pull/549
https://github.com/codezonediitj/pydatastructs/issues/545

1.4.2 Other Open Source Contributions

I have submitted more than 10 merged PRs to the LFortran repository
and more than 3 merged PRs to the LPython repository. Please find
my contributions here:

• LFortran contributions link

• LPython contributions link

1.5 Why me?

In this section, I have listed down some strong points that I believe make me
the best candidate for this GSoC project:

• I possess experience in contributing to PyDataStructs code-
base, affording me a deep understanding of their intricacies.

• I am experienced as an open source contributor, I have been
contributing to open source organizations like LPython and LFortran
for about 3 months now.

• I possess good knowledge about tree and graph algorithms,
which is necessary for this project. I regularly participate in com-
petitive programming contests and I have a Codeforces rating of
1350+.

• I have established a strong communication based relationship
with the current team members who are set to mentor me during
the GSoC program.

• I am well versed with Python, C++, Git and GitHub. I use
Ubuntu 22.04.4 LTS and VS code as my code editor.

• My summer vacation aligns perfectly with the GSoC timeline, guaran-
teeing my full availability for GSoC, without any conflicting pro-
fessional commitments. This ensures dedicated work.

• I have a very high level of motivation for GSoC, and I am consis-
tent in my work, this is reflected by my academic results.

• I am enthusiastic about the success of PyDataStructs and I am willing
to continue contributing post GSoC too.

6

https://github.com/lfortran/lfortran
https://github.com/lcompilers/lpython
https://github.com/lfortran/lfortran/pulls?q=is%3Apr+author%3AKishan-Ved
https://github.com/lcompilers/lpython/pulls?q=is%3Apr+author%3AKishan-Ved

1.6 My Availability

I ensure full availability during the months of May, June and July. I have
my summer vacation during this period. This perfectly aligns with GSoC’s
timeline. I plan to do a project of 350 hours, and I will start coding from
the community bonding period itself. I will start coding from 2nd May, as
my examination ends on 1st May. I will work for 20 hours a week in May, 40
hours a week in June and 20 hours a week in July. In August, I will complete
the remaining time, which is around 10 hours a week. This is because my
college resumes in August. The detailed timeline is in Section 3 ahead.

2 The Project

Sub-Org name: Open Science Labs
Partner Organization: PyDataStructs
Duration: 350 hours

I am interested in the project: Add C++ Backend for all trees and port
stack.py to C++ Backend. I wish to do a project of 350 hours. The detailed
timeline, along with division of work (by hours) is described in the next sec-
tion.

Project Abstract:
There are 2 broad goals of my project:

• The first is to add C++ backend for all trees present in binary trees.py
file, which currently supports Python backend for the following trees:

– AVL Tree

– Binary Tree

– Binary Search Tree

– Binary Indexed Tree

– Cartesian Tree

– Treap

– Splay Tree

– Red Black Tree

7

https://github.com/OpenScienceLabs/gsoc/blob/main/project-ideas/gsoc2024.md#project-idea-2-add-c-backend-for-all-the-trees-present-in-binary_treespy-porting-stackpy-to-c-backend
https://github.com/OpenScienceLabs/gsoc/blob/main/project-ideas/gsoc2024.md#project-idea-2-add-c-backend-for-all-the-trees-present-in-binary_treespy-porting-stackpy-to-c-backend

I will implement different types of tree traversals, like:

– Pre Order traversal

– Post Order traversal

– In Order traversal

– Out Order traversal

– Depth First Search (DFS)

– Breadth First Search (BFS)

• The second goal is to port stack.py to the C++ backend. Currently,
the Python backend supports the following classes:

– Stack

– Array Stack

– Linked List Stack

I will add exhaustive tests for all my implementations. Adding C++ back-
end for these will make the algorithms run faster. I will ensure that the
implementations are efficient in terms of time and space complexity. This
will make PyDataStructs extremely useful.

These have been described in detail below:

2.1 Adding C++ backend for Binary Trees

The current version of PyDataStructs supports a Python backend for all trees
in binary trees.py file. My project involves implementing a C++ backend for
all these trees. The implementations will be optimized in terms of time and
space complexity. I will add exhaustive tests for all my implementations.
The details of individual trees are described below:

2.1.1 Binary Trees:

The following functions will be supported:

• Creating a new binary tree

• insert

8

• delete

• search

• Printing functions

2.1.2 Binary Search Trees:

The following functions will be supported:

• insert

• delete

• search

• rank

• lowest common ancestor

• lower bound

• upper bound

2.1.3 Self Balancing Binary Trees:

The following functions will be supported:

• rotate left

• rotate right

• rotate left right

• rotate right left

2.1.4 Cartesian Trees:

The following functions will be supported:

• bubble up

• trickle down

9

• delete

• insert

• search

2.1.5 Treap:

The following functions will be supported:

• delete

• insert

• search

2.1.6 AVL Trees:

The following functions will be supported:

• delete

• insert

• search

• balance insert

• balance delete

• rotate left

• rotate right

• rotate left right

• rotate right left

10

2.1.7 Splay Trees:

The following functions will be supported:

• delete

• insert

• search

• join

• split

• zig zag

2.1.8 Red Black Trees:

The following functions will be supported:

• delete

• insert

• search

• get parent

• is leaf

• has red child

• other functions specific to Red Black Trees

2.1.9 Binary Indexed Trees:

The following functions will be supported:

• get prefix sum

• get sum

11

2.1.10 Binary Tree Traversals:

Different forms of traversals will be implemented, these include:

• Pre Order traversal

• In Order traversal

• Post Order traversal

• Out Order traversal

• Depth First Search (DFS)

• Breadth First Search (BFS)

2.2 Porting Stack.py to C++ Backend

This part of the project involves implementing stacks in the C++ backend.
I will also add exhaustive tests for my implementations. There are three
classes of stacks in PyDataStructs, their details are:

2.2.1 Stack:

The following functions will be implemented:

• Creating a new stack

• push

• pop

• is empty

• peek

2.2.2 Array Stack:

The following functions will be implemented:

• Creating a new stack

• push

12

• pop

• is empty

• peek

• length/size

• printing functions

2.2.3 Linked List Stack:

As the name suggested, linked list data structure is used in this implemen-
tation of stacks. The following functions will be implemented:

• Creating a new stack

• push

• pop

• is empty

• peek

• length/size

• printing functions

The detailed timeline of my project is described in the section below.

3 Timeline

I would like to do a project of 350 hours. I will start working from the com-
munity bonding period itself, which is in May. I will work for 20 hours a week
in May, 40 hours a week in June and 20 hours a week in July. In August, I
will complete the remaining time, which is around 10 hours a week. This is
because my college resumes after summer break in August.

Plan for Feedback and Code Review: I have planned out my project as
a set of multiple weekly sub goals, each having it’s own PR. This will make it

13

easier to review my code. As I have weekly PRs, I will use the last 1-2 days
of the week to polish my implementations based on the feedback received
from mentors.

Here is the tentative plan for my project:

3.1 Pre-GSoC Period

This period includes the time before the beginning of community bonding
phase i.e., 1st May, 2024. I will address existing issues, and solve them with
excellent PRs. I will spend time reading about the trees that I plan to
implement in the C++ backend, specifically AVL trees and Red Black Trees.

3.2 GSoC Period

According to the official dates, the complete program can be divided into
three parts, which include: Community Bonding Period, Phase - 1
and Phase - 2. The details of each of these is discussed in the following
subsections.

3.2.1 Community Bonding Period

This part of the program starts from 1st May, 2024 and ends on 26th May,
2024 consisting of nearly 4 weeks. I plan to start coding from 2nd May itself,
as my examination ends on 1st May. During this period, I will work for 20
hours a week. By the end of the community bonding period, I will have
completed 80 hours of work.
The weekly plan is as follows:

• In the first week, I will work on defining a C++ backend for my imple-
mentations. I will start working on the Binary Trees class, add support
for different parameters and implement the functions that it contains.

• In the second week, I will work on Binary Search trees. Once done, I
will start implementing Self Balancing Binary Trees.

• In the third week, I will finish Self Balancing Binary Trees and then
implement Cartesian trees and all the functions that it supports.

14

• In the fourth week, I will implement Treap. In this week, I will also
take out time for getting my code reviewed. I will address any changes
needed or add more functionality if suggested by my mentors.

By the end of the community bonding period, I will have successfully imple-
mented C++ backend for Binary Trees, Binary Search Trees, Self Balancing
Binary Trees, Cartesian Trees and Treap, with all the PRs reviewed and the
suggestions addressed.

3.2.2 Phase 1

This phase starts from 27th May, 2024 and ends on 12th July, 2024, consisting
of around 6 weeks. I plan to work for 40 hours a week in June (ie; the first
5 weeks of this phase) and 20 hours a week in July. Hence, in phase 1, I will
work for 240 hours.
The weekly plan for phase 1 is as follows:

• In the first week, I will implement AVL Trees, with all the functions
and parameters handled properly.

• In the second week, I will add C++ backend for Splay Trees.

• In the third week, I will work on implementing Red Black Trees.

• In the fourth week, I will implement Binary Indexed Trees.

• In the fifth and the sixth week, I will implement Binary Tree traversals,
like BFS, DFS, preorder, postorder and inorder. In these 2 weeks, I
will also address reviews and suggestions provided by my mentors.

Hence, by the end of Phase 1, I will successfully implement a C++ backend
for all trees present in binary trees.py file. I will ensure correctness of my
implementations by adding exhaustive tests. This will make the algorithms
run very fast and consequently, PyDataStructs will become more useful and
efficient.

15

3.2.3 Phase 2

This would be the final phase of the program starting from 12th July, 2024
and ending on 26th August, 2024 consisting of around 6 weeks. I will work
for 20 hours a week in July and complete the remaining project in August
(by working for around 10 hours a week). This is because my college resumes
in August.
The weekly plan for this duration is as follows:

• In the first week, I will work on correctly defining a C++ backend for
Stacks and implement the Stack class, with all the member methods
properly defined.

• In the second week, I will implement the Array Stack class.

• In the third and the fourth week, I will add C++ backend for the
Linked List Stack class.

• In the last 3 weeks, I will address reviews and add more functionality
as suggested by my mentors. I will also spend this time in documenting
my implementations and adding tests. These weeks might also be used
as buffer time for any hurdles that might arise or for any missing feature
that I need to implement.

By the end of Phase 2, I will have ported Stack.py file to the C++ backend.
This will make the Stack implementation of PyDataStructs fast and efficient.
This will complete my GSoC project.

3.3 Post-GSoC Period

I would like to continue working with the PyDataStructs team to implement
other classes and add data structures in both Python and C++ backend. I’ll
also contribute to exciting future goals, which lead to bringing PyDataStructs
closer to everyday use.

4 Acknowledgements

I would like to thank Gagandeep Sir for helping me get started with open
source contributions, giving valuable feedback on my Pull Requests, guiding

16

me whenever requested and most importantly, providing valuable advice to
help me draft this proposal.

5 Preference

I have submitted 2 proposals for GSoC 2024. My order of preference is:

1. Python Software Foundation: LPython

2. NumFOCUS: Open Science Labs: PyDataStructs

My primary objective for participating in the Google Summer of Code (GSoC)
program is to make substantive contributions to open-source projects. Con-
sequently, I am open and willing to contribute to any organization, as I am
genuinely enthusiastic about contributing to a project during my summer
vacation.

17

	About Me
	Personal Information
	Personal Background
	Programming Background
	Previous Contributions to Open Source
	PyDataStructs
	Other Open Source Contributions

	Why me?
	My Availability

	The Project
	Adding C++ backend for Binary Trees
	Binary Trees:
	Binary Search Trees:
	Self Balancing Binary Trees:
	Cartesian Trees:
	Treap:
	AVL Trees:
	Splay Trees:
	Red Black Trees:
	Binary Indexed Trees:
	Binary Tree Traversals:

	Porting Stack.py to C++ Backend
	Stack:
	Array Stack:
	Linked List Stack:

	Timeline
	Pre-GSoC Period
	GSoC Period
	Community Bonding Period
	Phase 1
	Phase 2

	Post-GSoC Period

	Acknowledgements
	Preference

